Все главные формулы по математике

Оглавление

Формулы сокращенного умножения и разложения на множители	2
Квадратное уравнение	
Парабола	
Степени и корни	
Логарифмы	
Прогрессии	
Тригонометрия	
Тригонометрические уравнения	8
Планиметрия	8
Стереометрия	. 13
Координаты	. 14
Таблица умножения	. 14
Таблица квалратов двухзначных чисел	. 14

EDUCON.BY

Формулы сокращенного умножения и разложения на множители

Формулы сокращенного умножения:

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

Последние две формулы иногда удобнее использовать в следующем виде:

$$(a+b)^3 = a^3 + b^3 + 3ab(a+b)$$

$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$

Разложение квадратного трехчлена на множители:

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

где: x_1 и x_2 – корни уравнения: $ax^2 + bx + c = 0$, у которого D > 0 (т.е. имеется два корня). Или:

$$ax^2 + bx + c = a(x - x_0)^2$$

где: x_0 – единственный корень уравнения: $ax^2 + bx + c = 0$, у которого D = 0. Если корней у трехчлена нет, то на множители он не раскладывается.

Квадратное уравнение

$$ax^{2} + bx + c = 0 \qquad (a \neq 0)$$
$$D = b^{2} - 4ac$$

Если D > 0, то имеется два корня:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

Если D = 0, то имеется один корень (его кратность: 2):

$$x_0 = \frac{-b}{2a}$$

Если D < 0, то корней нет.

Теорема Виета (выполняется только если оба корня существуют, т.е. в случае когда D > 0):

$$x_1 + x_2 = -\frac{b}{a} \qquad \qquad x_1 \cdot x_2 = \frac{c}{a}$$

Парабола

График параболы задается квадратичной функцией:

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

Если a > 0, то ветви параболы направлены вверх, если a < 0, то ветви параболы направлены вниз, при этом координаты вершины параболы:

$$x_{e} = -\frac{b}{2a}$$

$$y_e = y_{\max[a<0]} = y_{\min[a>0]} = ax_e^2 + bx_e + c = c - \frac{b^2}{4a}$$

Парабола всегда пересекает ось OY в точке: (0; c).

Степени и корни

Свойства степеней:

 $a^{p+g} = a^p \cdot a^g$ $\frac{a^p}{a^g} = a^{p-g}$ $(a^p)^g = (a^g)^p = a^{p \cdot g}$ $\frac{a^p}{b^p} = \left(\frac{a}{b}\right)^p$ $(a \cdot b)^p = a^p \cdot b^p$

$$a^0 = 1$$
 $a^1 = a$ $1^n = 1$

 $0^n = 0$; при n > 0, ноль можно возводить только в положительную степень.

$$a^{-n} = \frac{1}{a^n}$$
 $\frac{1}{a^{-n}} = a^n$

Свойства корней:

Если $m \in \mathbb{Z}$ – целое, $n \in \mathbb{N}$ – натуральное, то для любого a > 0 справедливо:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

Для любых натуральных m и n, а также любых $a \ge 0$ и $b \ge 0$ справедливы равенства:

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
 (при $b \neq 0$)

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[m]{a}} = \sqrt[n-m]{a}$$

$$\sqrt[n]{a} = \sqrt[n-m]{a^m}$$

Для арифметических корней:

$$\left(\sqrt[n]{a}\right)^n = a$$

Последнее справедливо: если n — нечетное, то для любого a; если же n — четное, то только при $a \ge 0$. Для корня нечетной степени выполняется также следующее равенство:

$$\sqrt[2n+1]{-x} = -^{2n+1}\sqrt{x}$$

Для корня четной степени:

$$\sqrt[2n]{x^{2n}} = |x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

Логарифмы

Определение логарифма: если $\log_a x = b$, то $a^b = x$, при: a > 0, x > 0, $a \ne 1$. Или:

$$a^{\log_a x} = x$$

Свойства логарифмов:

 $\log_a a = 1$ $\log_a 1 = 0$ $\log_a b = \frac{1}{\log_b a}$ $\log_a (x \cdot y) = \log_a x + \log_a y$ $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$

 $\log_a x^k = k \cdot \log_a |x|;$ при $x \neq 0$, если k – четное число.

 $\log_a x^k = k \cdot \log_a x$; при x > 0, если k - любое другое число.

 $\log_{a^k} x = \frac{1}{k} \log_{|a|} x$; при $a \neq 0$ и $a \neq \pm 1$, если k – четное число.

 $\log_{a^k} x = \frac{1}{k} \log_a x$; при a > 0 и $a \ne 1$, если k – любое другое число.

$$\log_a x = \frac{\log_c x}{\log_c a};$$
 при $c > 0, c \neq 1.$ $a^{\log_b c} = c^{\log_b a}$

Прогрессии

Арифметическая прогрессия:

$$a_n = a_1 + d(n-1)$$
$$a_n = a_{n-1} + d$$

$$2a_n = a_{n-1} + a_{n+1}$$

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + d(n-1)}{2} \cdot n$$

$$a_m + a_n = a_k + a_p \,; \quad \text{при: } m+n = k+p.$$

Геометрическая прогрессия:

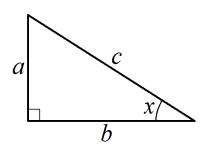
$$b_n = b_1 \cdot q^{n-1}$$
 $b_n = b_{n-1} \cdot q$ $b_n^2 = b_{n-1} \cdot b_{n+1}$ $S_n = \frac{b_1(1-q^n)}{1-q}$ $S_{\text{беск,убыв.}} = \frac{b_1}{1-q}$; при: $|q| < 1$. $b_m \cdot b_n = b_k \cdot b_p$; при: $m+n=k+p$.

Тригонометрия

Основное тригонометрическое тождество:

$$\sin^2 x + \cos^2 x = 1$$

Основные тригонометрические формулы. Пусть имеется прямоугольный треугольник, изображенный на рисунке, тогда:



$$\sin x = \frac{a}{c}$$

$$\cos x = \frac{b}{c}$$

$$\operatorname{tg} x = \frac{a}{b} = \frac{\sin x}{\cos x}$$

$$\operatorname{ctg} x = \frac{b}{a} = \frac{1}{\operatorname{tg} x} = \frac{\cos x}{\sin x}$$

$$\sin 2x = 2\sin x \cdot \cos x = \frac{2\operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \operatorname{tg}^2 x}{1 + \operatorname{tg}^2 x}$$

$$\operatorname{tg} 2x = \frac{2\operatorname{tg} x}{1 - \operatorname{tg}^2 x} \qquad \operatorname{ctg} 2x = \frac{1 - \operatorname{tg}^2 x}{2\operatorname{tg} x} = \frac{\operatorname{ctg}^2 x - 1}{2\operatorname{ctg} x}$$

 $tg^2x + 1 = \frac{1}{\cos^2 x}$

 $\operatorname{ctg}^2 x + 1 = \frac{1}{\sin^2 x}$

Формулы сложения:

$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y$$

$$\sin(x-y) = \sin x \cdot \cos y - \cos x \cdot \sin y$$

$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y$$

$$\cos(x-y) = \cos x \cdot \cos y + \sin x \cdot \sin y$$

$$tg(x+y) = \frac{tg x + tg y}{1 - tg x \cdot tg y}$$

$$tg(x-y) = \frac{tg x - tg y}{1 + tg x \cdot tg y}$$

$$ctg(x+y) = \frac{1 - tg x \cdot tg y}{tg x + tg y} = \frac{ctg x \cdot ctg y - 1}{ctg y + ctg x}$$

$$ctg(x-y) = \frac{1 + tg x \cdot tg y}{tg x - tg y} = \frac{ctg x \cdot ctg y + 1}{ctg y - ctg x}$$

Формулы преобразования суммы в произведение:

$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right) \cdot \cos\left(\frac{x-y}{2}\right)$$

$$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right) \cdot \sin\left(\frac{x-y}{2}\right)$$

$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right) \cdot \cos\left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right) \cdot \sin\left(\frac{x-y}{2}\right)$$

$$tg x + tg y = \frac{\sin(x+y)}{\cos x \cdot \cos y}$$

$$tg x - tg y = \frac{\sin(x-y)}{\cos x \cdot \cos y}$$

$$\cot x + \cot y = \frac{\sin(y+x)}{\sin x \cdot \sin y}$$

$$\cot x - \cot y = \frac{\sin(y-x)}{\sin x \cdot \sin y}$$

Формулы преобразования произведения в сумму:

$$\sin x \cdot \sin y = \frac{1}{2} (\cos(x-y) - \cos(x+y))$$

$$\sin x \cdot \cos y = \frac{1}{2} (\sin(x-y) + \sin(x+y))$$

$$\cos x \cdot \cos y = \frac{1}{2} (\cos(x-y) + \cos(x+y))$$

Формулы понижения степени:

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$
$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$
$$tg^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

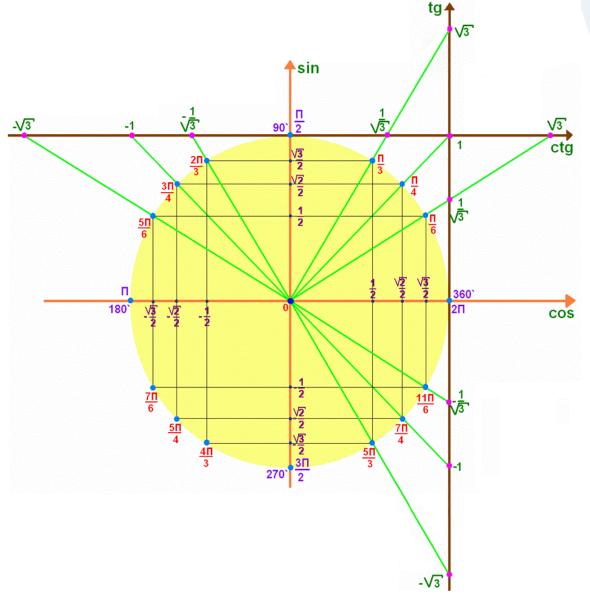
$$\operatorname{ctg}^2 \frac{x}{2} = \frac{1 + \cos x}{1 - \cos x}$$

Формулы половинного угла:

$$tg x = \frac{\sin 2x}{1 + \cos 2x} = \frac{1 - \cos 2x}{\sin 2x}$$
$$ctg x = \frac{1 + \cos 2x}{\sin 2x} = \frac{\sin 2x}{1 - \cos 2x}$$

Формулы приведения:

Функции	Углы										
	-α	90° – α	90° + α	180° – α	180° + α	270° – α	270° + α	$360^{\circ}k - \alpha$	$360^{\circ}k + \alpha$		
sin	-sin α	+cos α	+cos α	+sin α	-sin α	-cos α	-cos α	-sin α	+sin α		
cos	+cos α	+sin α	-sin α	-cos α	-cos α	-sin α	+sin α	+cos α	+cos α		
tg	−tg α	+ctg α	−ctg α	−tg α	+tg α	+ctg α	−ctg α	−tg α	+tg α		
ctg	-ctg α	+tg α	−tg α	-ctg α	+ctg α	+tg α	-tg α	-ctg α	+ctg a		



Тригонометрические уравнения

Формулы решений простейших тригонометрических уравнений. Решение уравнения вида $\sin x = a$, может быть записано двумя равнозначными способами:

$$\sin x = a \implies x = (-1)^n \arcsin a + \pi n, \quad n \in \mathbb{Z}$$

$$\sin x = a \implies x = \begin{bmatrix} \arcsin a + 2\pi k, & k \in \mathbb{Z} \\ \pi - \arcsin a + 2\pi k, & k \in \mathbb{Z} \end{bmatrix}$$

Решение остальных уравнений записывается единственным образом:

$$\cos x = a \implies x = \pm \arccos a + 2\pi n, \quad n \in \mathbb{Z}$$

$$\operatorname{tg} x = a \implies x = \operatorname{arctg} a + \pi n, \quad n \in \mathbb{Z}$$

$$\operatorname{ctg} x = a \implies x = \operatorname{arcctg} a + \pi n, \quad n \in \mathbb{Z}$$

 $\sin x = 0 \implies x = \pi n, \quad n \in \mathbb{Z}$

Некоторые частные случаи:

$$\sin x = 1 \implies x = \frac{\pi}{2} + 2\pi n, \quad n \in \mathbb{Z}$$

$$\sin x = -1 \implies x = -\frac{\pi}{2} + 2\pi n, \quad n \in \mathbb{Z}$$

$$\cos x = 0 \implies x = \frac{\pi}{2} + \pi n, \quad n \in \mathbb{Z}$$

$$\cos x = 1 \implies x = 2\pi n, \quad n \in \mathbb{Z}$$

$$\cos x = -1 \implies x = \pi + 2\pi n, \quad n \in \mathbb{Z}$$

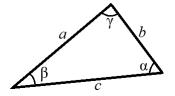
$$\tan x = -\frac{\pi}{2} + \pi n, \quad n \in \mathbb{Z}$$

$$\tan x = -\frac{\pi}{2} + \pi n, \quad n \in \mathbb{Z}$$

$$\tan x = -\frac{\pi}{2} + \pi n, \quad n \in \mathbb{Z}$$

Планиметрия

Произвольный треугольник (a, b, c — стороны треугольника, r — радиус вписанной окружности, R — радиус описанной окружности, h_a — высота опущенная на сторону a, h_b — высота опущенная на сторону b, h_c — высота опущенная на сторону c, l_a — биссектриса опущенная на сторону a, m_a — медиана опущенная на сторону a).



Сумма углов треугольника:

$$\alpha + \beta + \gamma = 180^{\circ} = \pi$$
 рад

Площадь треугольника через две стороны и угол между ними:

$$S = \frac{1}{2} a \cdot b \cdot \sin \gamma$$

Площадь треугольника через основание и высоту опущенную на это основание:

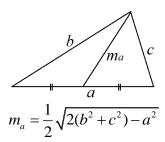
$$S = \frac{1}{2} b \cdot h_b$$

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

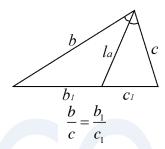
где: $p = \frac{a+b+c}{2}$ — полупериметр. Площадь треугольника через радиус описанной окружности:

$$S = \frac{abc}{4R}$$

Формула медианы:



Свойство биссектрисы:



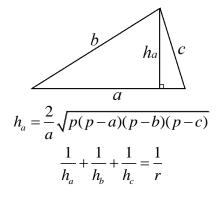
Формулы биссектрисы:

$$l_a = \sqrt{bc - b_1 c_1} \qquad l_a = \frac{\sqrt{cb(b + c + a)(b + c - a)}}{c + b}$$

Основное свойство высот треугольника:

$$\frac{h_a}{h} = \frac{h_b}{a}$$

Формулы высоты:



Теорема косинусов:

$$a^2 = b^2 + c^2 - 2bc \cdot \cos \alpha$$

Теорема синусов:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Правильный треугольник (все стороны равны a). Радиус окружности, вписанной в правильный треугольник:

$$r = \frac{a\sqrt{3}}{6}$$

Радиус окружности, описанной около правильного треугольника:

$$R = \frac{a\sqrt{3}}{3}$$

Все главные формулы по математике

Площадь правильного треугольника:

$$S = \frac{a^2 \sqrt{3}}{4}$$

Прямоугольный треугольник (a, b – катеты, c – гипотенуза). Теорема Пифагора:

$$c^2 = a^2 + b^2$$

Радиус окружности, вписанной в прямоугольный треугольник:

$$r = \frac{a+b-c}{2}$$

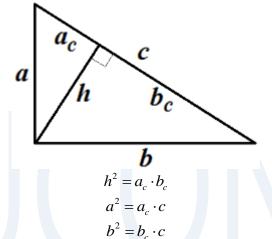
Радиус окружности, описанной около прямоугольного треугольника:

$$R = \frac{c}{2}$$

Площадь прямоугольного треугольника:

$$S = \frac{1}{2}ab = \frac{1}{2}hc$$

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:



Трапеция (a, b - основания, h - высота). Средняя линия трапеции:

$$l = \frac{a+b}{2}$$

Площадь трапеции:

$$S = l \cdot h = \frac{a+b}{2} \cdot h$$

Параллелограмм. Площадь параллелограмма через сторону и высоту опущенную на неё:

$$S = bh$$

Площадь параллелограмма через две смежные стороны и угол между ними:

$$S = ab \cdot \sin \gamma$$

Квадрат. Площадь квадрата через сторону:

$$S = a^2$$

Площадь квадрата через диагональ:

$$S = \frac{1}{2}d^2$$

Площадь ромба через две диагонали d_1 и d_2 , а также через угол между равными сторонами a:

$$S = \frac{1}{2}d_1d_2 = a^2\sin\gamma$$

Площадь прямоугольника через две смежные стороны:

$$S = ab$$

Площадь произвольного выпуклого четырехугольника через диагонали и угол между ними:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

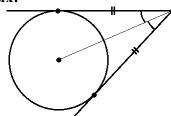
Площадь произвольной фигуры в которую можно вписать окружность (в т.ч. площадь любого треугольника) может быть рассчитана через радиус вписанной окружности и полупериметр по очень важной формуле:

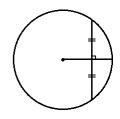
$$S = p \cdot r$$

По этой же формуле часто удобно находить и радиус вписанной окружности в некоторый многоугольник, в который её удалось вписать (в т.ч. любой треугольник):

$$r = \frac{S}{p}$$

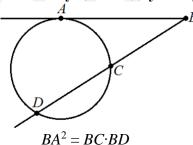
Свойства хорд и касательных:

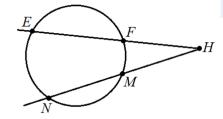




Теорема о пропорциональных отрезках хорд:

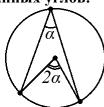
Теорема о касательной и секущей и о двух секущих:

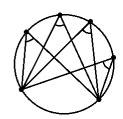




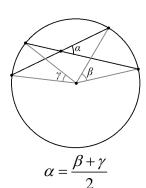
 $HF \cdot HE = HM \cdot HN$

Свойства центральных и вписанных углов:

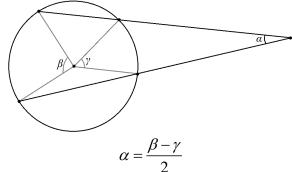




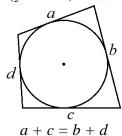
Свойство центральных углов и хорд:



Свойство центральных углов и секущих:



Окружность вписана в четырёхугольник (условие, когда это возможно):



Окружность описана около четырехугольника (условие, когда это возможно):

Сумма углов *п*-угольника:

$$\alpha_1 + \alpha_2 + ... + \alpha_n = 180^{\circ} \cdot (n-2) = \pi \cdot (n-2)$$
 рад

Центральный угол правильного *п*-угольника:

$$\alpha = \frac{360^{\circ}}{n} = \frac{2\pi}{n}$$
 рад

Площадь правильного многоугольника (a_n – сторона правильного n-угольника, r – радиус вписанной окружности):

$$S = \frac{n \cdot a_n \cdot r}{2}$$

Длина окружности (здесь и далее R – радиус окружности или круга):

$$L = 2\pi R$$

Длина дуги окружности:

$$L_{ ext{дуги}} = rac{\pi \cdot R \cdot lpha_{ ext{град}}}{180} = lpha_{ ext{рад}} R$$

Площадь круга:

$$S = \pi R^2$$

Площадь кругового сектора:

$$S_{\text{сектора}} = \frac{\pi \cdot R^2 \cdot \alpha_{\text{град}}}{360} = \frac{\alpha_{\text{рад}} R^2}{2}$$

Площадь кольца (R — радиус внешней окружности, r — радиус внутренней окружности):

$$S = \pi \left(R^2 - r^2 \right)$$

Площадь кругового сегмента ($0 < \alpha < \pi$; α — угол в радианах):

$$S = \frac{R^2}{2} (\alpha - \sin \alpha)$$

Стереометрия

Куб (a – сторона куба, d – главная диагональ). Главная диагональ куба:

$$d = a\sqrt{3}$$

Объем куба:

$$V = a^3$$

Прямоугольный параллелепипед (a, b, c – его измерения, d – главная диагональ). Объем:

$$V = abc$$

Главная диагональ прямоугольного параллелепипеда:

$$d^2 = a^2 + b^2 + c^2$$

Призма (h – высота призмы). Объем призмы:

$$V = S_{\text{och}} \cdot h$$

Прямая призма (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

$$S_{\text{бок}} = Pl = Ph$$

Цилиндр (R – радиус основания, h – высота цилиндра). Объем цилиндра:

$$V = \pi R^2 h$$

Площадь боковой поверхности цилиндра:

$$S_{60K} = 2\pi Rh$$

Объем пирамиды (h – высота пирамиды):

$$V = \frac{S_{\text{och}} \cdot h}{3}$$

Правильная пирамида (P — периметр основания, l — апофема, т.е. высота боковой грани). Площадь боковой поверхности:

$$S_{\text{бок}} = \frac{1}{2} Pl$$

Объем конуса (R – радиус основания, h – высота конуса):

$$V = \frac{\pi R^2 h}{3}$$

Площадь боковой поверхности конуса:

$$S_{60\kappa} = \pi R l$$

где: l – длина образующей: $l = \sqrt{h^2 + R^2}$.

Объем шара (*R* – радиус шара):

$$V = \frac{4}{3} \pi R^3$$

Площадь поверхности сферы (*R* – радиус сферы):

$$S = 4\pi R^2$$

Координаты

Числовая ось. Пусть координата начала отрезка AB равна x_1 , а координата конца x_2 . Тогда длина отрезка находится по формуле:

$$|AB| = |x_2 - x_1|$$

Координату середины отрезка находят по формуле:

$$x_c = \frac{x_1 + x_2}{2}$$

Координатная плоскость. Пусть координаты начала отрезка AB равны: $A(x_1; y_1)$, а координаты конца: $B(x_2; y_2)$. Тогда длина отрезка находится с помощью теоремы Пифагора по формуле:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Координаты середины отрезка находят по формулам:

$$x_c = \frac{x_1 + x_2}{2}$$
 $y_c = \frac{y_1 + y_2}{2}$

Трехмерная система координат. Пусть координаты начала отрезка AB равны: $A(x_1; y_1; z_1)$, а координаты конца: $B(x_2; y_2; z_2)$. Длина отрезка находится по формуле:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Координаты середины отрезка находят по формулам:

$$x_c = \frac{x_1 + x_2}{2}$$
 $y_c = \frac{y_1 + y_2}{2}$ $z_c = \frac{z_1 + z_2}{2}$

Таблица умножения

		Одно из умножаемых								
		1	2	3	4	5	6	7	8	9
Второе из умножаемых	1	1	2	3	4	5	6	7	8	9
	2		4	6	8	10	12	14	16	18
	3			9	12	15	18	21	24	27
	4				16	20	24	28	32	36
умі	5					25	30	35	40	45
е из	6						36	42	48	54
Второе	7							49	56	63
	8								64	72
	9									81

Все главные формулы по математике

Таблица квадратов двухзначных чисел

		Десятки										
		0	1	2	3	4	5	6	7	8	9	
	0	0	100	400	900	1600	2500	3600	4900	6400	8100	
	1	1	121	441	961	1681	2601	3721	5041	6561	8281	
	2	4	144	484	1024	1764	2704	3844	5184	6724	8464	
	3	9	169	529	1089	1849	2809	3969	5329	6889	8649	
Единицы	4	16	196	576	1156	1936	2916	4096	5476	7056	8836	
Един	5	25	225	625	1225	2025	3025	4225	5625	7225	9025	
	6	36	256	676	1296	2116	3136	4356	5776	7396	9216	
	7	49	289	729	1369	2209	3249	4489	5929	7569	9409	
	8	64	324	784	1444	2304	3364	4624	6084	7744	9604	
	9	81	361	841	1521	2401	3481	4761	6241	7921	9801	